
DISCRIMINANT ANALYSIS OF OLIVE MILL WASTES 

USING SPECTRORADIOMETERS IN THE VISIBLE AND 

NEAR INFRARED PART OF THE SPECTRUM  

Athos Agapiou a,b, Nikos Papadopoulos b, Apostolos  Sarris b 

 a Department of Civil Engineering and Geomatics, Faculty of Engineering and Technology, Cyprus University of 

Technology, 2-6, Saripolou str., 3603, Limassol, Cyprus, athos.agapiou@cut.ac.cy 

b Laboratory of Geophysical-Satellite Remote Sensing & Archaeo-environment, Institute for Mediterranean 

Studies, Foundation for Research & Technology, Hellas (F.O.R.T.H.), nikos@ims.forth.gr, asaris@ret.forthnet.gr 

 

Abstract  

This paper aims to introduce an Olive Mill Waste index which is able to enhance the detection 

of olive mill disposal areas using multispectral satellite images. For this purpose several ground 

spectroradiometric measurements in the range of 450 – 900 nm have been collected at a variety 

of targets. The samples were initially resampled to the GeoEye-1 sensor using the appropriate 

Relative Response Filter (RSR) and then scatter plots and spectral signatures were projected. 

Then an evaluation of nine widely used vegetation indices was performed. This analysis 

indicated that, Perpendicular Vegetation Index (PVI), Transformed Soil Adjusted Vegetation 

Index (TSAVI) and Soil and Atmospherically Resistant Vegetation Index (SARVI) are the most 

efficient to enhance the detection of Olive Mill Waste disposal areas. Moreover, correlation as 

well as separability analysis have shown than the blue and VNIR spectral bands are the most 

suitable for interpretation purposes. The Olive Mill Waste index was finally applied to a 

GeoEye-1 in two cases studies in the island of Crete. 
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Introduction 

Management of olive mill waste water (OMWW) remains a critical and unsolved problem, 

especially in regions where huge quantities of wastes are produced. Indeed the olive mill wastes 

(OMW) generated from olive oil extraction is a major environmental issue, particularly in 

Mediterranean areas [Dermeche et al. 2013]. It is estimated that almost 750 million productive 

olive trees exists worldwide, while a majority of them (≈98%) being located in the 

Mediterranean region, where the three major olive oil producers (Spain, Italy, and Greece) 

worldwide are located [Asfi et al., 2012; Roig, Cayuela and Sánchez-Monedero, 2006]. 

Therefore olive oil industry is very important in Mediterranean countries, both in terms of 

wealth and tradition and it is considered to be as one of the driving sectors of the agricultural 

economy of the Mediterranean basin. OMWW is mainly composed of water (80-83%), organic 

(15-18%) and inorganic compounds (2%). Although OMWW can be used as natural, low-cost 

fertilizer, it is actually non-biodegradable and therefore unsuitable for further use as fertilizer 

or as irrigation water [Niaounakis and Halvadakis, 2006]. 

In the last years efforts have been made for efficient and ecological management of OOMW 

disposal areas as well as for the long their term monitoring. In order to avoid environmental 

impacts, which include soil and air pollution, olive mills were forced to treat or eliminate this 

OOMW using a variety of techniques and technologies. To this direction current research 

efforts have been oreinted towards the development of efficient treatment technologies, namely 

physical, chemical and biological processes as well as various combinations of them [Asfi et 

al., 2012]. In some Mediterranean countries, untreated OOMW are often discharged directly 

into sewer systems and water streams or disposed in evaporation ponds/lagoons and soils 

despite the fact that such management practices are not allowed in most Mediterranean 

countries [Hanifi and El Hadrami, 2009]. Moreover, no specific European Commission 

legislation exists today for OMWW management and each country issues different guidelines 

[Komnitsas et al., 2011]. 
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OMWW disposal areas are generally scattered in different places with diverse loecal 

topographical and geological settings, while their identification might be difficult and time 

consuming if it is based purely on in–situ observations. Alternative, satellite remote sensing 

employing multispectral images seems to be ideal for the detection and systematic monitoring 

of OOMW disposal areas. As Agapiou et al. [2015] and Alexakis et al [2015] have recently 

shown, medium and high resolution images can be used to detect OOMW. However difficulties 

might exist in classification processing as well as detection algorithms due to the spectral 

similarity of OOMW with other targets. Spectral similarity becomes more difficult in some 

cases due to the phenomenon of the mixed pixels in the satellite images. 

This paper aims to investigate further this spectral similarity as well to identify spectral 

windows where satellite images can be used so as to enhance the final results. For this purpose 

spectroradiometric measurements were taken from different targets as descripted in the next 

section. The spectral signatures were then post-processed through a variety of remote sensing 

analyses including discriminate analysis; vegetation indices and correlation analysis. 

Methodology 

In order to accomplish the scientific objectives of this study, laboratory spectroradiometric 

measurements were taken over the following samples: (a) fresh olive wastes (same day 

production); (b) dry olive wastes; (c) olive wastes mixed with water (25%); (d) olive wastes 

mixed with water (50%); (e) olive wastes mixed with soil (25%); (f) olive wastes mixed with 

water (50%) and soil (50%) and (g) bare soil. 

For each one of these samples, 50 spectroradiometric measurements were taken using the 

GER1500 spectroradiometer. The instrument was set up to collect an average of 5 

measurements per sample. GER 1500 spectroradiometer has the ability to record 

electromagnetic radiation from visible to NIR spectrum (350–1050 nm) using 512 different 

channels, with a range of ~1.5 nm. Moreover, a lambertian spectralon panel was also used in 

order to measure the incoming solar radiation and calibrate all the measurements taken over the 

crops. The field of view (FOV) of the instrument was set to 4 degrees (≈0.02 m2 from a height 
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of 1.2 m). At first the incoming radiance was calculated based on the reference measurement at 

the spectralon panel, while the following measurements were taken over the sample.  

Then these narrowband measurements were simulated with the high resolution sensor GeoEye-

1 using the appropriate Relative Spectral Response (RSR) filter which was obtained from the 

operator’s website. The spectral band response ρ was simulated by integrating the measured 

radiances for each target, with the spectral response curve applied as a weighting function, i.e:  

 𝜌 =  
∫ 𝑤(𝜆)𝑅(𝜆)𝑑𝜆

𝜆2

𝜆1

∫ 𝑤(𝜆)𝛪(𝜆)𝑑𝜆
𝜆2

𝜆1

   (1) 

where R is the measured reflected radiation at the top of the canopy as a function of wavelength 

λ, w is the relative response of the broadband sensor and I is the corresponding incident radiance 

measured on an ideal reference panel. The actual reference panel measurement I is corrected to 

the ideal (100% reflectance) by dividing the measured value by its true reflectance ρref. 

.  𝐼(𝜆) =  
𝐼′(𝜆)

𝜌𝑟𝑒𝑓(𝜆)
   (2) 

Based on these broadband reflectance values several vegetation indices as shown in Table 1 

were calculated. In detail the Normalized Difference Vegetation Index (NDVI); Simple Ratio 

(SR); Perpendicular Vegetation Index (PVI); Ratio Vegetation Index (RVI); Transformed Soil 

Adjusted Vegetation Index (TSAVI); Modified Soil Adjusted Vegetation Index (MSAVI); Soil 

and Atmospherically Resistant Vegetation  Index (SARVI); DVI (Difference Vegetation 

Index) and Green Normalized Difference Vegetation Index (Green NDVI) were examined. 

Later, the relative differences between all samples and vegetation indices were calculated. 

Table 1. Vegetation indices used for the aims of the study  

No 
Vegetation 

Index 
Equation Reference 

1  
NDVI  (pNIR – pred)/(pNIR + pred) [Rouse et al., 1974]  

2  
SR  pNIR/pred [Jordan, 1969] 

3  
PVI (pNIR –α pred – b)/(1+α2) 

[Richardson and Wiegand, 

1977] 
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pNIR,soil = α pred,soil+b 

4  
RVI   pred/pNIR [Pearson and Miller, 1972] 

5  
TSAVI  

[α(pNIR-α pNIR – b)]/[ (pred +α pNIR –

αb+0.08(1+α2))] 

pNIR,soil = α pred,soil+b 

[Baret and Guyot, 1991] 

6  
MSAVI  [2 pNIR+1-[(2 pNIR+1)2-8(pNIR - pred)]1/2]/ 2 [Qi et al., 1994] 

7  
SARVI  

(1+0.5) (pNIR - prb)/( pNIR + prb +0.5) 

prb = pred – γ (pblue – pred) 
[Kaufman and Tanré, 1992] 

8  
DVI  pNIR - pred [Tucker, 1979] 

9  
Green NDVI  (pNIR – pgreen)/( pNIR + pgreen) [Gitelson, 1996] 

 

In parallel, the spectral similarity of the samples in the range of 450-900 nm was at first 

examined through the correlation coefficient (R2) of all samples in this spectral range. In 

addition, two main separability indices were evaluated: (a) Euclidean distance and (b) Cosine 

similarity. Separability indices were performed in order to identify the spectral regions which 

can be used for the enhancement of the OOMW identification in satellite images.  

 

Results 

Spectral Profiles 

Scatter plots based on the reflectance values for the GeoEye-1 sensor are shown in Figure 1.  

As it is observed at the Blue – Green scatter plot, all samples (except soil) tend to give similar 

reflectance values. Some differences can be recorded in the other three scatter plots (Blue – 

VNIR; Red-NVIR and Green-VNIR) where the different samples seem to be grouped with a 

small distance in the 4-D spectral space. However since this spectral distance is quite small (i.e. 

<5% difference at reflectance values), errors in classification processing are expected due to 

the spatial resolution and mixed pixels.  It should be also noted that soil and the different targets 

of OOMW examined here tend to give dissimilar reflectance values in all scatter plots. This 

allows to distinguish these two major group targets (i.e. soil and OOMW) in multispectral 

images such as the GeoEye-1. The small variations and changes of the “Fresh olive waste (same 
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day production)” are also noticeable. Small reflectance values are observed for these targets in 

the blue and green part of the spectrum while the reflectance is increasing in the red and VNIR 

spectrum. This also indicates that the spectral profile of the OOMW is changing in time in the 

presence of sun (i.e. dry olive waste), rain (i.e. OOMW with water) or due to the disposal of 

the environment (i.e. OOMW mixed with soil). 

 

Figure 1: Scatter graph of the Blue-Green band; Blue-VNIR band; Red-VNIR and Blue-Green 

bands of the samples.  

Spectral Profiles 

Spectral signatures collected from all samples  (fresh olive wastes (same day production); dry 

olive wastes; olive wastes mixed with water (25%); olive wastes mixed with water (50%); olive 

wastes mixed with soil (25%); olive wastes mixed with water (50%) and soil (50%) and bare 

soil) are shown in Figure 2 along with their standard deviations. The dataset was resampled to 

the GeoEye-1 sensor using equations 1 and 2. As demonstrated in Figure 2, close similarities 

between the samples do exist, which was also observed from the scatter plots (see Figure 1). 

These spectral similarities influence classification or detection analysis using satellite images, 

since the samples may be confused between the different categories. In general in all samples 
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the lowest reflectance is recorded in the blue band (450-520nm) while higher reflectance values 

are observed in the VNIR part of the spectrum.  

 

Figure 2: Average spectral signatures as simulated to the GeoEye-1 sensor with their standard 

deviation. 

Vegetation Indices 

In an attempt to analyse further the data collected as well as to investigate any potential use of 

the vegetation indices, well established equations were applied (see Table 1). All spectral 

signatures were re-calculated to the nine different vegetation indices (based on the GeoEye-1 

RSR filter) and their statistics (i.e. mean values) were used for comparison analysis. Relative 

differences between all samples and all vegetation indices are catalogued in Table 2. Higher 

relative differences for each sample are also highlighted in the table. As shown some vegetation 

indices tend to give higher relative difference between the samples. These indices are the PVI, 

TSAVI and SARVI. Indeed these three vegetation indices tend to give more than 95% of the 

total higher relative differences compared to the rest of the indices. Although vegetation indices 

were not designed to distinguish OOMW areas their application in remote sensing images can 

be useful as demonstrated in this example. SARVI index seems to be quite efficient for the 
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detection of OOMW areas since it minimizes the atmospheric effects as well the soil 

background noise in the image.  

Table 2. Relative difference (%) between all targets examined in this study. Bold and underlined 

number indicates the higher relative difference observed in each group of target. Gray values 

indicate the target which is under investigation. (a) fresh olive wastes (same day production); (b) 

dry olive wastes; (c) olive wastes mixed with water (25%); (d) olive wastes mixed with water 

(50%); (e) olive wastes mixed with soil (25%); (f) olive wastes mixed with water (50%) and soil 

(50%)  and (g) bare soil. 

Target NDVI SR PVI RVI TSAVI MSAVI SARVI DVI Green NDVI 

a                   

b 26 24 35 24 35 19 8 25 16 

c 33 28 43 28 46 25 14 28 22 

d 25 24 44 23 34 19 7 35 18 

e 40 32 60 32 58 31 39 41 25 

f 28 26 61 26 39 22 62 52 18 

g 67 43 112 42 108 58 6 55 44 

          

Target NDVI SR PVI RVI TSAVI MSAVI SARVI DVI Green NDVI 

a 26 24 35 24 35 19 8 25 16 

b                   

c 8 5 9 5 13 6 6 4 6 

d 1 0 10 0 1 0 1 11 2 

e 16 9 31 9 28 13 46 18 9 

f 3 2 33 2 5 3 57 31 2 

g 50 20 127 20 117 44 14 35 30 

                   

Target NDVI SR PVI RVI TSAVI MSAVI SARVI DVI Green NDVI 

a 33 28 43 28 46 25 14 28 22 

b 8 5 9 5 13 6 6 4 6 

c                   

d 8 5 2 5 14 6 7 7 4 

e 8 4 23 4 16 7 50 15 3 

f 5 3 25 3 8 3 53 28 4 

g 44 16 134 16 122 39 20 31 24 

          

Target NDVI SR PVI RVI TSAVI MSAVI SARVI DVI Green NDVI 

a 25 24 44 23 34 19 7 35 18 

b 1 0 10 0 1 0 1 11 2 

c 8 5 2 5 14 6 7 7 4 

d                   

e 17 9 21 9 29 13 45 8 7 
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f 4 2 24 2 6 3 58 21 0 

g 50 21 135 21 117 44 13 25 28 

          

Target NDVI SR PVI RVI TSAVI MSAVI SARVI DVI Green NDVI 

a 40 32 60 32 58 31 39 41 25 

b 16 9 31 9 28 13 46 18 9 

c 8 4 23 4 16 7 50 15 3 

d 17 9 21 9 29 13 45 8 7 

e                   

f 13 7 3 7 23 10 82 14 7 

g 37 12 159 12 133 32 34 17 21 

          

Target NDVI SR PVI RVI TSAVI MSAVI SARVI DVI Green NDVI 

a 28 26 61 26 39 22 62 52 18 

b 3 2 33 2 5 3 57 31 2 

c 5 3 25 3 8 3 53 28 4 

d 4 2 24 2 6 3 58 21 0 

e 13 7 3 7 23 10 82 14 7 

f                   

g 48 18 163 18 119 41 66 3 28 

          

Target NDVI SR PVI RVI TSAVI MSAVI SARVI DVI Green NDVI 

a 67 43 112 42 108 58 6 55 44 

b 50 20 127 20 117 44 14 35 30 

c 44 16 134 16 122 39 20 31 24 

d 50 21 135 21 117 44 13 25 28 

e 37 12 159 12 133 32 34 17 21 

f 48 18 163 18 119 41 66 3 28 

 

Correlation analysis 

The correlation analysis was based on the narrowband reflectance values of the samples. The 

Pearson correlation coefficient (R), is used to measure the strength of the linear relationship 

between two variables (in this case the association between the reflectance in different 

wavelengths) as shown in equation 3: 

 

𝑟 = 𝑟𝑥𝑦 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−𝑦)̅̅ ̅𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)𝑛
𝑖=1

2√∑ (𝑦𝑖−�̅�)𝑛
𝑖=1

2
  (3) 
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This investigation will allow to examine which spectral bands (i.e. spectral window) are the 

optimum for discriminant analysis of the OOMW targets.  

Figure 3 indicates the one minus the sample correlation (1-R2) which shows that higher values 

(indicated with red colour) are observed in the two edges of the spectrum examined in this study 

(450 nm and 900 nm). These wavelengths correspond to the blue and VNIR bands of the 

GeoEye-1 sensor. For the rest of wavelengths a strong correlation is visible (< 0.3 in Figure 3). 

This conclusion is also in line with the results of Figures 1 and 2 where visible bands tend to 

give similar reflectance values while the VNIR band seems to be more appropriate for detection 

of OOMW areas in satellite imagery. 

 

Figure 3: Correlation coefficient results in the range of 450 nm - 900 nm. The figure indicates the 

one minus the sample correlation.  

Separability analysis 

Two main algorithms were used to identify spectral regions which are capable to distinguish 

better the spectral diversity of the different targets examined in this study. These algorithms are 
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often called separability indices, since they are used to examine the separability of two 

variables. The purpose of these indicators is to identify whether a group of observations X is 

separable from another group of observations Y. In this case the Euclidean distance and the 

Cosine similarity were examined. These algorithms are widely used in classification techniques 

for satellite images. The Euclidean distance is used in classifications where the minimum 

distance algorithm is applied, while the Cosine similarity index is exploited to Spectral Angle 

Mapper (SAM) classification techniques. 

(a) Euclidean distance. This method simply calculates the Euclidean distance between a pair 

of observations. The mathematical equation of Euclidean distance is presented in Equation 4, 

while the results for both case studies are tabulated in Table 3. 

d = (px - qx) (4) 

Where d: Euclidean distance; px and qx are radiations in a specific wavelength. 

The final results from the Euclidean distance index are shown in Table 3. Grey values indicate 

the highest seperability recorded from all dataset. 

Table 3. Euclidean distance from all samples in the range of 450 nm-900 nm 

  450 nm  500 nm 550 nm 600 nm 650 nm 700 nm 750 nm 800 nm 850 nm 900 nm 

450 nm  0                   

500 nm 18 0                 

550 nm 50 31 0               

600 nm 85 67 35 0             

650 nm 117 99 68 34 0           

700 nm 160 143 113 80 46 0         

750 nm 212 195 167 135 102 56 0       

800 nm 259 243 216 185 153 108 52 0     

850 nm 301 286 260 230 199 154 99 48 0   

900 nm 338 323 298 269 239 194 140 89 41 0 

 

(b) Cosine similarity. The cosine similarity refers to the similarity between two vectors by 

calculating the cosine of the angle formed by these vectors. The cosine similarity is given by 

Equation 5. The final results from the Cosine similarity index are shown in Table 4. Grey values 

indicate the highest seperablity recorded from all dataset. 

cosine simillarity = cos (φ) = 1 - (px. qx
Τ) / ((px. pxΤ) (qx. qx

Τ) 0.5 (4) 
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Table 4. Cosine similarity distance from all samples in the range of 450 nm-900 nm 

  450 nm  500 nm 550 nm 600 nm 650 nm 700 nm 750 nm 800 nm 850 nm 900 nm 

450 nm  0,000                   

500 nm 0,001 0,000                 

550 nm 0,007 0,002 0,000               

600 nm 0,011 0,005 0,001 0,000             

650 nm 0,014 0,008 0,003 0,001 0,000           

700 nm 0,022 0,016 0,012 0,009 0,003 0,000         

750 nm 0,038 0,033 0,029 0,025 0,015 0,004 0,000       

800 nm 0,057 0,053 0,049 0,045 0,031 0,014 0,003 0,000     

850 nm 0,079 0,075 0,072 0,068 0,051 0,028 0,011 0,003 0,000   

900 nm 0,100 0,096 0,094 0,088 0,069 0,043 0,021 0,008 0,002 0,000 

 

The final results from both separability indices indicate that the spectral regions of 450nm and 

900 nm are the most optimal for detection of OOMW targets. Therefore using these spectral 

regions (i.e. Blue and VNIR in the GeoEye-1 image) OOMW areas should be enhanced better 

than any other spectral combination. 

Discussion 

Separability analysis identified that the blue and VNIR part of the spectrum are the optimum 

two wavelength regions for the detection of OOMW. This is also indicated and confirmed by 

the correlation analysis (see Figure 3). Indeed correlation analysis shows that these two spectral 

regions at around 450 nm and 900 nm tend to be the most un-correlated. In a similar way the 

results from the scatter plots and the spectral signatures of the target (see Figure 1 and Figure 

2 respectively) indicate that the maximum spectral distance is observed in the Blue and VNIR 

bands of the GoeEye-1 sensor. 

These observations are also in agreement with the outcomes from the vegetation indices 

analysis. As it was found, the most promising indices were the PVI, TSAVI and SARVI. The 

calculation for these specific three indices is based on the blue band. Although the blue band is 

mainly used as a “correction” coefficient to these indices (i.e. removal of atmospheric effects 

in the satellite images), its use gives the highest relative difference among all the broadband 

vegetation indices examined here.  
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The overall results from this study were applied using a GeoEye-1 pan sharpen image taken 

over the island of Crete in June 16th 2013. As it is indicated in Figure 4 (left) some OOMW 

disposal areas can be spotted using interpretation of the image. Figure 4 (right) is the same area 

after the application of the normalized OOMW index (shown in equation 5) as found from the 

discriminant analysis in the previous sections. The results show that OOMW disposal areas can 

be enhanced after the application of the proposed index. 

Normalized Index OOMW = (ρVNIR – ρBlue) / (ρVNIR + ρBlue)    (5) 

  

Figure 4: Two examples from OOMW disposal areas in Crete as seen in the GeoEye-1 image (left) 

in the VNIR-R-G pseudo color composite.  In the right the same area after the application of the 

normalized VNIR – Blue band. The OMW disposal areas are highlighted as dark objects in the 

scene. 

 

Conclusions 

Olive production industry is of great importance for Mediterranean countries. Therefore a 

sustainable management of the whole cycle of olive production needs to be taken into 

consideration so as to minimize and eliminate the environmental problems related with the 

OOMW disposal areas.  

Geo
Sat 

ReS
eA

rch
 

IM
S-F

ORTH



This paper aims to highlight the contribution of satellite remote sensing as a tool for systematic 

and effective way for monitoring OMWW disposal areas. As previous studies have shown 

[Agapiou et al., 2015; Alexakis et al. 2015] remote sensing can be used for detection of OMWW 

areas.  

In order to achieve better results in satellite images, this paper has investigated several samples 

related with OOMW using ground spectroradiometers. Discriminant analysis was carried out 

in the samples collected and the final results have shown that the spectral region in the 450 nm 

and 900 nm can be used so as to detect better OOMW disposal areas. This conclusion was 

observed in a variety of remote sensing analysis: from simple scatter plots and spectral 

signatures, to vegetation indices as well to separability indices.  

The proposed normalised OOMW index was applied to a GeoEye-1 multispectral image 

successfully, improving the interpretation of the image. The overall results suggest that satellite 

remote sensing images can be used sufficiently for detecting and monitoring OOMW disposal 

areas in the whole life cycle (from fresh olive waste to mixed olive waste with soil).  
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