'4D and HD Geophysics' Workshop 5-16 /12 /2014

Surface-to-Tunnel ERT measurements and a bench-scale application for monitoring of dense non-aqueous phase liquids

Simyrdanis Kleanthis. Tsourlos Panagiotis, Christopher Power

Lab of Geophysical-Satellite Remote Sensing and Archaeoenvironment

GEOELECTRICAL MEASUREMENTS SURFACE-to-TUNNEL

-K-

les cost lite . 14

-vel-

Man

14

INTRO

BOREHOLE MEASUREMENTS

- Special Installation
- Dense Installation
- Cost

- USAGE of
 - EXISTING STRUCTURES
 - Natural Caves
 - Artificial (Tunnels)

INTRO

The Cause

"Geophysical Survey in ancient tunnel of Efpalinio" (2009) Prof. Tsokas Gregory

Previous Studies

- SASAKI & MATSUO (1993)
 surface-to-tunnel application for very <u>deep mining</u>
- DANIELSEN & DAHLIN (2010)
 Horizontal boreholes examining the <u>geological conditions of the rock</u> in front of a tunnel bore machine
- VAN SCHOOR & BINLEY (2010)
 Applicability of tunnel-to-tunnel electrical resistance tomography for imaging disruptive geological structures ahead of mining, in an igneous platinum mining environment

- New type of measurements ... so new PROBLEMS !
- ✓ How can we acquire measurements ?
- Can we optimize protocols used ?
- ✓ Tunnel Dimensions
- Distance between surface and interior electrodes
- ✓ Tunnel Effect

STRUCTURE

- Tools (algorithm, equipment)
- Arrays used
- Geometry
- Tunnel Effect Corrections
- Protocols Optimization
- Real case study
- Bench-scale experimental application
- Conclusions

Inversion Algorithm '2D-InvCODE'

- Existing code in Matlab (Tsourlos, Karaoulis)
- Forward: Based on FEM
- Inversion: Occam

Code Evolution

- New Protocols (2, 3 & 4 electrodes)
- Electrode Position
- Geometrical Factor Filter

CORRELATION FACTOR

$$correlation = \frac{\overline{\rho_{inv}} \cdot \rho_{mod}}{\left(\overline{\rho_{inv}^{2}} - \overline{\rho_{inv}}^{2}\right)^{1/2} \left(\overline{\rho_{mod}^{2}} - \overline{\rho_{mod}}^{2}\right)}$$

TOOLS

Inversion Results Help

🛎 🖬 🖑 Q Q 🔲 🐙 📰

Electrode Position

- Creating Parameters
- Resistance Distribution

Inversion Results

- % RMS
- Correlation
- Precise Target Position (black line)

start

Experimental Data Fully Controlled Environment

/erification o Array Evaluation

Basic Inversion Code

Study of Tunnel Effect, Electrode Displacement etc

Seismology ources & Environment nstitute of Crete

Apparatus

EQUIPMENT

Instruments

- Electrical Resistivity Meter
- Conductivity Meter

Why I should make new Protocols ?

Different Arrays between boreholes and surface-to-tunnel
 => Asymmetrical Sensitivity

<u>Algorithm to generate Protocols</u> (MATLAB)

Electrode combinations based on Crosshole Arrays

Greenhalgh & Bing (2000)

bipole-bipole (bb)

pole-dipole (pd)

pole-tripole (pt)

🕷 N	IATLAB						0.5K8/s 6%	Sat 20:41	± ∰ ♡ ⊕ Q
									1
ek	typwsh						protocol_bb_o	mod	15_bb mod15_bb_opt
00	0			forv	vard_modelling				
File	Model								
2	al 🔍 🔍 🖑 📰 🛯 🕊	5							
E	dit Model	Forward M	Model						
			1	1		4	1	100	Plot Options
60								-	Blocks
								90	Contour
40			1						
20								80	Sensitivity
0								70	Measurment 😑
20									
-20									All
-40								00	
-60								50	Resolution
-80								40	
					1				
100									
								30	k
120									
								20	
140									
								10	Exit
0	50	100	150	200	250	300	350	10	

FINAL PROTOCOLS

	Protocol	Combination		
	special-bb	AM-BN		
Special	special-pd	AM-N + N-AM		
	special-pt	AMN-B + B-AMN		
Surface	surf-bb, pd, pt	AMBN, AMN+NAM, AMNB+BAMN		
Interior	inter-bb, pd, pt			

Cumulative Jacobian Matrix

ARRAYS

SPECIAL

SPECIAL + SURFACE

SPECIAL + SURFACE + INTERIOR

Array Comparison

TUNNEL DISTANCE FROM SURFACE (D)

NO EXPERIMENTAL DATA due to TANK LIMITATIONS

Cumulative Jacobian Matrix

ratio 15/1

ELECTRODE HORIZONTAL DISPLACEMENT

EXPERIMENTAL DATA

bipole-bipole

pole-dipole

DIMENSIONS

PROGRAM 'DC-3DPRO'

TUNNEL SIMULATION IN 3D DIMENSIONS

TUNNEL EFFECT

36
NOISE

bb

= pd

■ pt

Measurements above 10% error

%noise(i) = $\frac{\rho_h - \rho_i}{\rho_h}$

TUNNEL EFFECT

DIMENSION TUNNEL LIMIT

TUNNEL EFFECT

TUNNEL EFFECT

TUNNEL EFFECT CORRECTION

bipole-bipole

pole-dipole

pole-tripole

PROTOCOL OPTIMIZATION

USING JACOBIAN MATRIX

- ATHANASIOU ET AL., 2007
- BASIC CODE MODIFICATION ('2D-InvCODE')

	P1	P2	P3	P4
M1	0.798	0.226	-0.025	0.128
M2	0.625	-0.276	0.22	-0.028
M3	-0.356	0.856	-0.986	0.935
M4	0.832	-0.347	0.856	0.658
M5	0.556	0.885	0.659	-0.663

+ EXTRA MEASUREMENTS FOR 'WEAK' PARAMETERS

STUDY AREA

FIELD DATA

44

ELECTRODE POSITIONING USING TOPOGRAPHICAL SURVEY

FIELD DATA

SURFACE vs. SURFACE-TO-TUNNEL

- PROTOCOL OPTIMIZATION

- TUNNEL EFFECT CORRECTION

15.0

0-0

TUNNEL

 \circ

000

20.0

Ó

0

25.0

0

30.0

pole-dipole

bipole-bipole

pole-tripole

-5.0 -

5.0

0

10.0

00

0

FIE

FIELD DATA

Comparison with Previous Data

PAPADOPOULOS N., 2012

Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to horizontal borehole arrays

Christopher Power

(Power et al., 2015, Journal of Applied Geophysics)

Bench-Scale Experiments - Set up

tank

1 x 1 x 1 m

3D Visualization/Simulation

(Technological Educational Institute of Crete)

Injection Sources

point njection well

horizontal injection wells

Surface to horizontal borehole ERT frame

Surface electrodes

horizontal borehole electrodes

Horizontal borehole installation

Installation of horizontal injection wells

Installation of point injection well

Surface ERT electrodes

NAPL injection through syringe pumps

ERT measurement system

Results - Time lapse monitoring

200 mL / 0 mL

400 mL / 0 mL

71

600 mL / 0 mL

<u>1600 mL / 0 mL</u>

• Excavation of tank at the end of experiment

L2 cm depth

17 cm depth

22 cm depth

22 cm depth

CONCLUSIONS

... with questions

1. Why to use "surface-to-tunnel" measurements and which array is the 'best'?

Acknowledgements

This work was performed in the framework of the PEFYKA project within the KRIPIS action of the GSRT. The project is funded by Greece and the European Regional Development Fund of the European Union under the NSRF and the O.P. Competitiveness and Entrepreneurship.

European Regional

Ministry of Education and Religious Affairs General Secretariat for Research and Technology HELLENIC REPUBLIC MINISTRY FOR DEVELOPMENT & COMPETITIVENESS

regions at the centre of development

Co - financed by the Hellenic Republic and the European Union - European Regional Development Fund, in the context of the O.P. Competitiveness and Entrepreneurship (OPC II) and the R.O.P. Attica, R.O.P. Macedonia - Thrace

... 양해 해 주셔서 감사합니다!

